numbers.prime

numbers.prime.coprime(a, b)

Determine if two integers are coprime.

Parameters

a : Int

First integer.

b : Int

Second integer

Returns

bool : Boolean

true if a, b are coprime, false otherwise.

Errors

This function does not raise any errors.


numbers.prime.factorization(n)

Factors an integer, n, into its prime factors and puts them into an array.

Parameters

n : Int

The number to factor.

Returns

arr : Array

The prime factors of n.

Errors

This function does not raise any errors.


numbers.prime.getPerfectPower(n)

Determines if an integer, n, is a perfect power. It should be noted that this does not find the minimum value of k where m^k = n for some m.

Parameters

n : Int

The number to test.

Returns

arr/bool : Array/Boolean

Returns [m,k] if n is a perfect power, returns false otherwise.

Errors

This function does not raise any errors.


numbers.prime.getPrimePower(n)

Determines if an integer, n, is a prime power (n = p^m). The prime and the power are returned if so.

Parameters

n : Int

The number to test.

Returns

arr/bool : Array/Boolean

Returns [p,m] if n is a perfect power, returns false otherwise.

Errors

This function does not raise any errors.


numbers.prime.millerRabin(n, k)

Determines if an integer, n, is prime in polynomial time using the Miller-Rabin primality test, with an accuracy rate (number of trials) k.

Parameters

n : Int

The number to test for primality.

k : Int

The accuracy rate.

Returns

bool : Boolean

true if n is prime, false otherwise.

Errors

This function does not raise any errors.


numbers.prime.sieve(n)

Creates an array of prime numbers from 2 to n, inclusive.

Parameters

n : Int

The largest prime number to be returned.

Returns

arr : Array

An array of primes from 2 to n.

Errors

This function does not raise any errors.


numbers.prime.simple(n)

Determines if an integer, n, is prime using brute force.

Parameters

n : Int

The number to test for primality.

Returns

bool : Boolean

true if n is prime, false otherwise.

Errors

This function does not raise any errors.