### numbers.prime

#### numbers.prime.coprime(a, b)

Determine if two integers are coprime.

Parameters a : Int First integer. b : Int Second integer bool : Boolean true if a, b are coprime, false otherwise. This function does not raise any errors.

#### numbers.prime.factorization(n)

Factors an integer, n, into its prime factors and puts them into an array.

Parameters n : Int The number to factor. arr : Array The prime factors of n. This function does not raise any errors.

#### numbers.prime.getPerfectPower(n)

Determines if an integer, n, is a perfect power. It should be noted that this does not find the minimum value of k where m^k = n for some m.

Parameters n : Int The number to test. arr/bool : Array/Boolean Returns [m,k] if n is a perfect power, returns false otherwise. This function does not raise any errors.

#### numbers.prime.getPrimePower(n)

Determines if an integer, n, is a prime power (n = p^m). The prime and the power are returned if so.

Parameters n : Int The number to test. arr/bool : Array/Boolean Returns [p,m] if n is a perfect power, returns false otherwise. This function does not raise any errors.

#### numbers.prime.millerRabin(n, k)

Determines if an integer, n, is prime in polynomial time using the Miller-Rabin primality test, with an accuracy rate (number of trials) k.

Parameters n : Int The number to test for primality. k : Int The accuracy rate. bool : Boolean true if n is prime, false otherwise. This function does not raise any errors.

#### numbers.prime.sieve(n)

Creates an array of prime numbers from 2 to n, inclusive.

Parameters n : Int The largest prime number to be returned. arr : Array An array of primes from 2 to n. This function does not raise any errors.

#### numbers.prime.simple(n)

Determines if an integer, n, is prime using brute force.

Parameters n : Int The number to test for primality. bool : Boolean true if n is prime, false otherwise. This function does not raise any errors.